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Background of Dermatological Disease Diagnosis by Machine Learning MICCAI2027.
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Motivation MlGGAIZﬁZ
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Machine learning-based dermatological disease diagnosis methods usually targets a high accuracy.

 The learned models show discrimination towards certain demographic groups.
* Models show a high accuracy on some demographic groups, but low on others.

« Caused by that the models use the information present in some data but not in other data.
» Information such as skin tones, genders

« It is necessary to effectively remove this information for a fair model.
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Challenges of Achieving Fair Dermatological Diagnosis Models MIGGAIZUZ;

1. Completely removing the model’s arability to predict a protected attribute is challenging since this
attribute can also be predicted from the combination of other attributes.

2. Aggressive suppression of sensitive information will greatly degrade the model’s accuracy.

Contributions

1. We propose FairPrune, a technique to achieve fairness via pruning.
« Conventionally, pruning is used to reduce the model size for efficient inference.
* We show that pruning can be a powerful tool for fairness.

2. By controlling the parameters to prune, we can reduce the accuracy difference between the privileged
group and the unprivileged group.

* Improving fairness while keeping their overall accuracy as high as possible.

3. We measure the importance of each parameter to different groups by its saliency.
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Revisiting Parameter Saliency MlGEAL%:gng
Saliency reflects the increase of prediction error after pruning some parameters.
The saliency of parameter 6;: AE = h;; azzei
AE = B(D|6 = 0) - E(D) S
—_ ;gigi + % Z hii6% + % ; hi;0:0; + O(]|1O]]?) =% Z h92
1. 9; = g—z the gradient of E with respect to 6,. Close to O for pre-trained models.

5 .. — 2°E  The diagonal element in row i and column i of the second derivate
*0%0; Hessian matrix H.

3 and 4. %Ziij h;; 0; 6, + 0(]|8]]°)  Neglectable.
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FairPrune: Achieving Fairness via Pruning MlGGAlz‘UZﬁ;
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Results of FairPrune MICCAI2022.

Fairness Metric: Eopp and Eodd

Equalized opportunity (Eopp)
 EoppO: True Negative Rate difference between two groups.

 Eoppl: True Positive Rate difference between two groups.

K K
EOpp0 =) |TNRj —TNR)|, EOppl=) |TPR,—TPR}|.

k=1 k=1
. T Py c TNE . F P,
TPhR, = TP,;HL%N;; T'NRy = TN;;—I—;’PE FPR) = TN;;+%‘P§
Equalized Odds (Eodd)
K
EOdd =Y |TPR; — TPR) + FPR; — FPR)).
k=1
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Results of FairPrune
Datasets

1. Fitzpatrick-17k
« 16,003 images with 114 skin conditions.
» Six levels of skin tones.
« 11,057 light skins and 4,946 dark skins.

« The vanilla model has higher accuracy on dark skins.

2. 1SIC 2019
« 25,331 images with 9 skin conditions.
« Use gender as the sensitive attribute.
« 11,600 female images and 12,358 male images.

« The vanilla model has higher accuracy on female images.
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Results of FairPrune on Fitzpatrick-17k
* Improved fairness.
« Marginally reduced diagnosis accuracy.

Table 1: Results of accuracy and fairness of different methods on Fitzpatrick-17k
dataset, using skin tone as the sensitive attribute. The dark skin is the privileged
group with higher accuracy by vanilla training. (pr is the pruning ratio).

Accuracy Fairness
Method Skin Tone Precision Recall Fl-score Eopp0 (x107%) | Eoppll) FEodd |
Dark 0.563 0.581 0.546
. Light 0.482 0.495 0.473
Diff. | 0.081 0.086 0.073
e . Dark 0.506 0.562 0.506
| : Light 0.427 0.464 0.426
| AdvConf [29] Ave. 1 0.467 0.513 0.466 1.106 0.339 0.169
Lo Diff. | 0.079 0.098 0.080
it : Dark 0.514 0.545 0.503
: | Light 0.489 0.469 0.457
bemmmmmee e Diff. | 0.025 0.076 0.046
Dark 0.547 0.567 0.532
. Light 0.455 0.480 0.451
DomainIndep [27] Avg. 1 0.501 0.523 0.492 1.210 0.344 0.172
Diff. | 0.092 0.087 0.081
T T T ! Dark 0.557 0.570 0.536
+ OBD [19] | Light 0.488  0.494  0.475 | ous 0360 0.180
' (pr=35%) : Avg. 1 0.523 0.532 0.506 ) ) '
“““““““ Diff. | 0.069 0.076 0.061
FairP Dark 0.567 0.519 0.507
arbrune Light 0.496 0477  0.459 0.846 0.330  0.165

(pr=35%, 3=0.33)  Avg. 1 0.531  0.498  0.483
Diff. | 0.071  0.042  0.048
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Results of FairPrune on ISIC 2019

* Improved fairness
« Marginally reduced diagnosis accuracy

Table 2: Results of accuracy and fairness of different methods on ISIC 2019

dataset, using gender as the sensitive attribute. The female group is the privi-

leged group with higher accuracy by vanilla training. (pr is the pruning ratio).
Accuracy Fairness

Method Gender Precision Recall Fl-score Eopp0(x10~%)] Eoppl(x10~°)| Eodd(x107?)]

Female 0.758 0.733 0.744
) Male 0.766 0.684 0.716
Diff | 0.008 0.049 0.028

Female 0.691 0.688 0.686
Male 0.681  0.656 0.665

Diff | 0.010 0.032 0.021
Female 0.638 0.714 0.670
Male 0.642  0.666 0.650 5.0 59.9 64.2

AdvRev [25] Avgt  0.640 0690 0.660
Diff |  0.004 0048 0.020

Female 0.782 0.693 0.729

. Male 0.783  0.653  0.697

Diff | 0.001 0.040 0.032
Female 0.771 0.734 0.749

OBD [15] Male 0762 0.678 0.711 61 555 616
(pr=50%) Avet 0767 0706 0.730 : : :
Diff | 0009 0056 0.038
i Prne Female 0.754 0.674 0.707
Male 0762 0.675 0.710 . 21.0 08 8

(pr=50%, =0.2) Avg? 0.758  0.675  0.709
Diff | 0.008 0.001 0.003
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