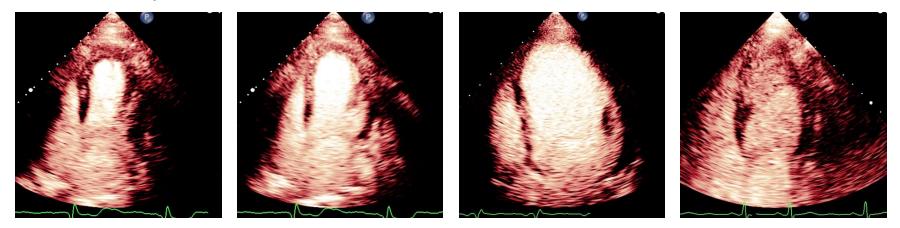
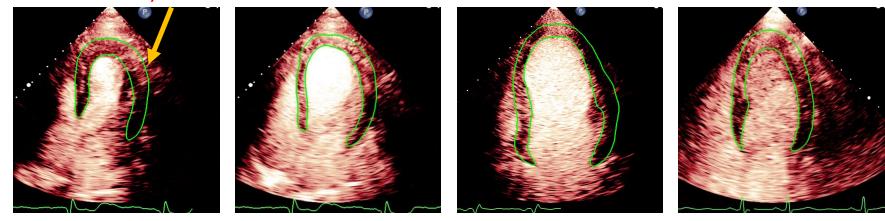
Myocardial Segmentation in Contrast Echocardiography with Multiple Acceptable Annotations

Dewen Zeng*, Yukun Ding*, Meiping Huang+, Jian Zhuang+, and <u>Yiyu Shi</u>* *University of Notre Dame +Guangdong General Hospital

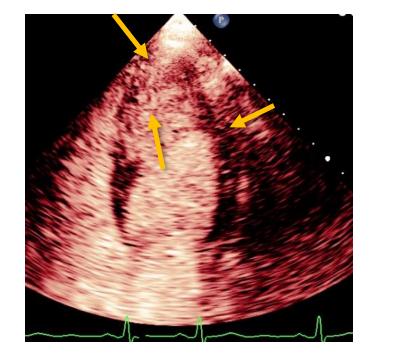
Contrast echocardiography: Ultrasound of the heart that is performed with some acoustically active particles for assessing left ventricle and myocardium function.

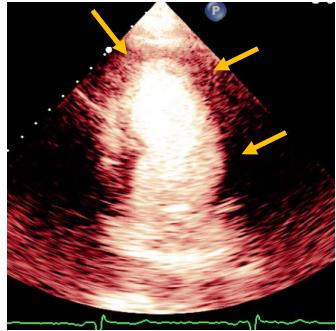


Myocardial segmentation myocardium

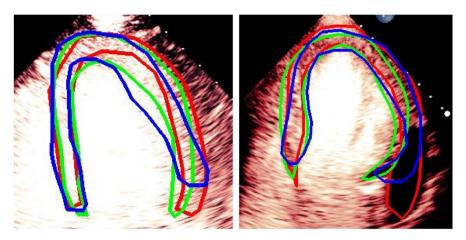


- Unique challenges in medical images (e.g., ultrasound)
 - Low signal-to-noise ratio & severe artifact
 - Large shape and pose variations of target organ or tissue





- Radiologists annotate differently
 - Large inter-observer variability exists

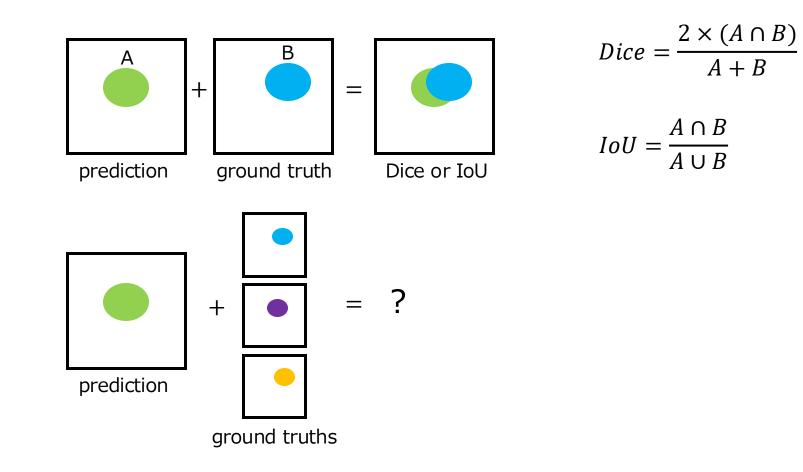


Myocardial annotations by three different radiologists

	Radiologists 1	Radiologists 2	Radiologists 3
Radiologists 1	1	-	-
Radiologists 2	0.849	1	-
Radiologists 3	0.790	0.800	1

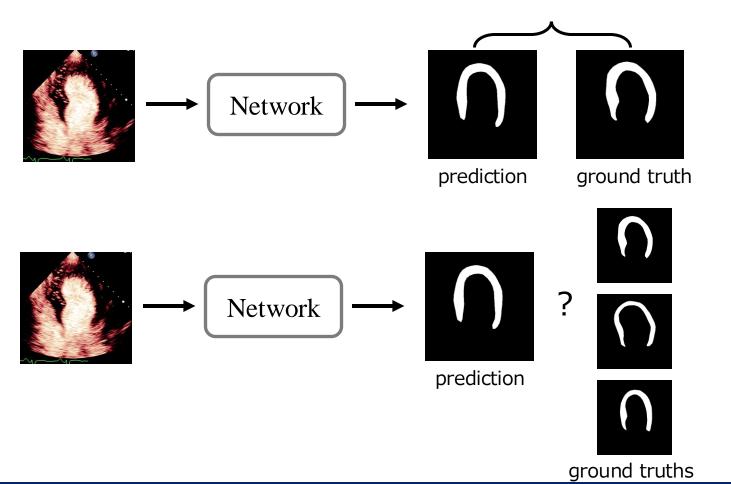
Dice of the annotations of each radiologist using one of the others' as the ground truth

• During Evaluation



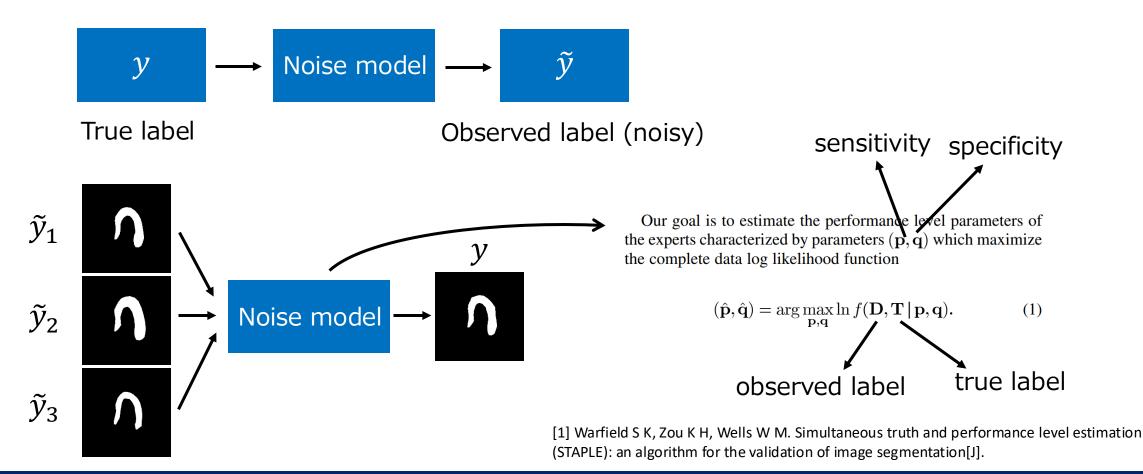
• During Training

cross entropy loss or soft-dice loss



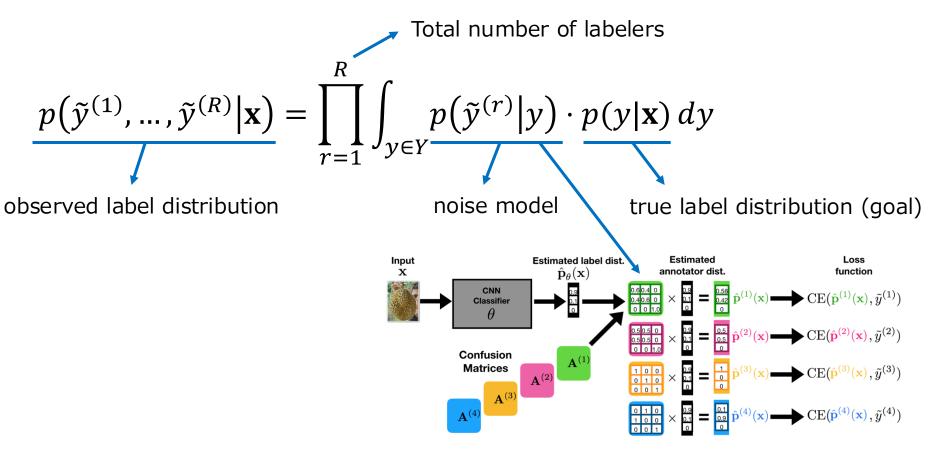
Existing Work

- Assuming noisy distribution
 - \tilde{y} (observed label) is dependent on y (true label, we don't have)



Existing Work

Annotator quality assessment by confusion matrix

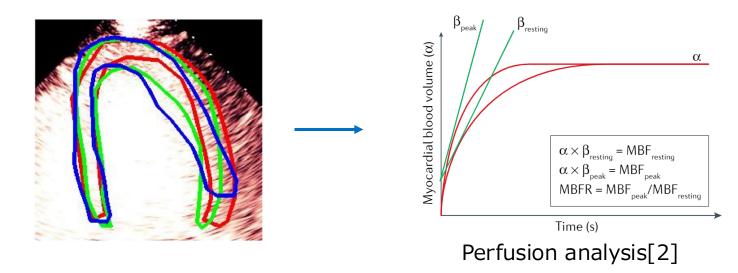


[1] Tanno R, Saeedi A, Sankaranarayanan S, et al. Learning from noisy labels by regularized estimation of annotator confusion (CVPR, 2019).

Example: model annotator quality using confusion matrix [1]

Motivation

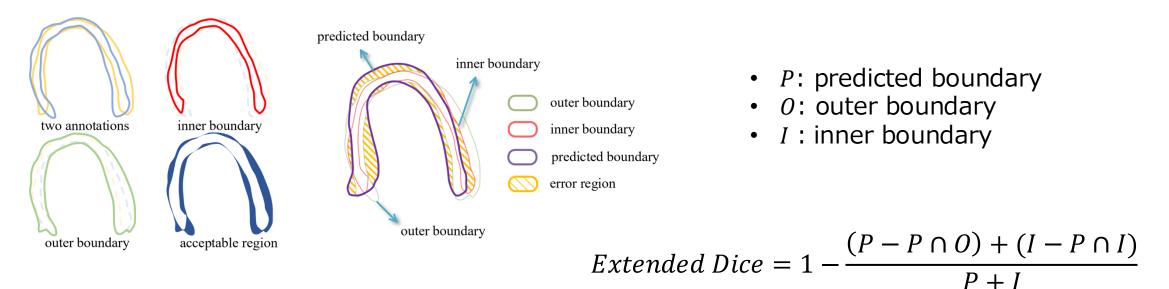
- Label noise is dependent on the original input
 - Images with large artifact will have larger label noise
- Segmentation annotations by different radiologists are all acceptable in clinical setting^[1]
 - They can be used for further medical analysis



McErlean A, Panicek D M, Zabor E C, et al. Intra-and interobserver variability in CT measurements in oncology[J]. Radiology, 2013, 269(2): 451-459.
 Dewey M, Siebes M, Kachelrieß M, et al. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia[J]. Nature Reviews Cardiology

Method

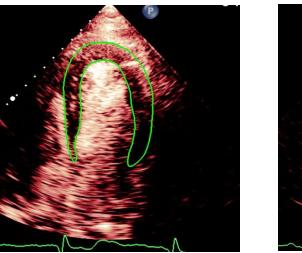
- Extended Dice
 - Acceptable region where any radiologist agrees
 - Error region where none of the radiologist agree
 - Can be used for evaluation and training



When I = 0, extended Dice becomes Dice

Dataset

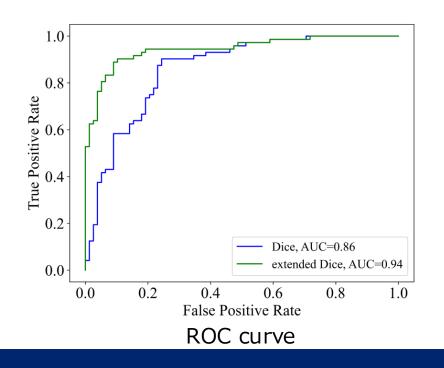
- Contrast Echocardiography Dataset
 - 100 patients
 - Each patient has 10 frames randomly selected from a sequence
 - 5 radiologists annotate each image
 - 700:300 for training and testing



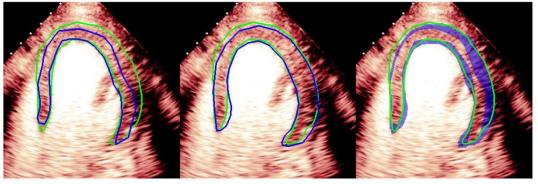
myocardium

Extended Dice for Evaluation

- Compare Dice and extended Dice as segmentation evaluation metric
 - Using Dice and extended Dice as indicator to decide whether the prediction need manual correction
 - Class 1, need manual correction, class 0, do not need manual correction
 Dice>0.8 Good



Majority vote	Radiologist 3	 ED>0.96 Good
Dice: 0.720	Dice: 0.884	ED: 0.961



- Green: predicted boundary
- Blue: ground truth
- Shaded Blue: acceptable regions

- Evaluation using conventional metrics (Dice, IoU, Hausdorff Distance)
 - Network: U-Net

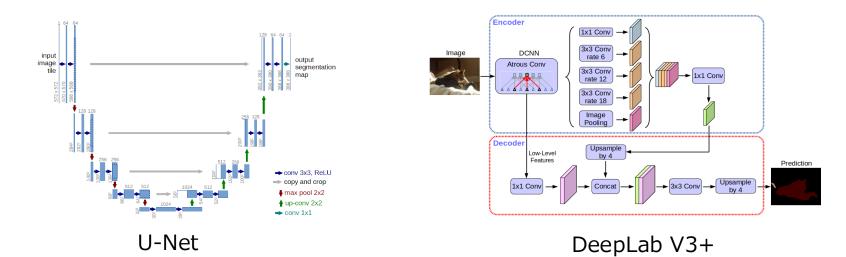
Method	GT: majority vote				
Method	Dice	IoU	HD		
Single Cardiologist	0.838(.11)	0.735(.12)	28.4(17)		
Inner Boundary	0.770(.11)	0.638(.11)	34.2(17)		
Outer Boundary	0.785(.09)	0.656(.11)	34.0(12)		
Consensus	0.847(.12)	0.753(.14)	28.0(19)		
Average Cross Entropy	0.844(.11)	0.745(.13)	26.4(15)		
Confusion Matrix [1]	0.826(.12)	0.719(.13)	37.9(22)		
Consistency [2]	0.847(.10)	0.749(.13)	29.8(16)		
STAPLE [3]	0.814(.09)	0.695(.11)	31.8(16)		
Ours	0.855(.10)	0.759(.12)	25.4(14)		

[1] Tanno R, Saeedi A, Sankaranarayanan S, et al. Learning from noisy labels by regularized estimation of annotator confusion[C] (CVPR, 2019)

[2] Sudre C H, Anson B G, Ingala S, et al. Let's agree to disagree: Learning highly debatable multirater labelling[C] (MICCAI, 2020)

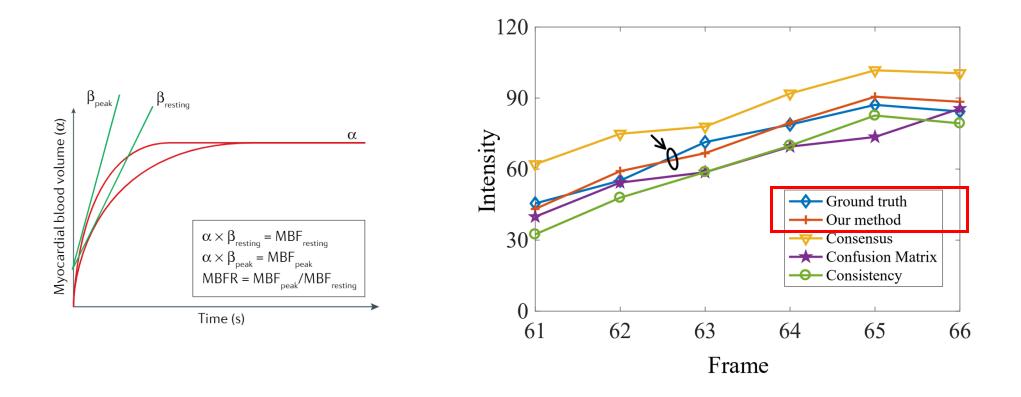
[3] Warfield S K, Zou K H, Wells W M. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation[J].

- Evaluation using extended Dice
 - Network: U-Net and DeepLab V3+

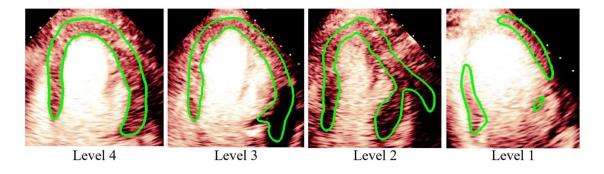


Method	SC	IB	OB	Consensus	ACE	CM	Consistency	STAPLE	Ours
U-Net	0.929(.06)	0.947(.05)	0.848(.07)	0.940(.06)	0.919(.06)	0.951(.06)	0.947(.06)	0.912(.06)	0.958(.05)
DeepLab	0.942(.07)	0.906(.08)	0.891(.07)	0.946(.08)	0.945(.07)	0.924(.08)	0.944(.07)	0.921(.07)	0.954(.06)

- Evaluation using frame-intensity curve
 - Frame-intensity curve is used for myocardial perfusion analysis to evaluate the functionality of heart.



- Grading study
 - An independent and experienced radiologist is asked to grade the myocardial segmentation result in a blind setting
 - 4 grading levels



Grading Level	Consensus	Confusion Matrix	Consistency	Our method
Level 4 (Highest)	58	71	69	72
Level 3	56	39	42	50
Level 2	11	17	22	20
Level 1 (Lowest)	25	23	17	8

Wrap Up

- New extended Dice to train neural network and evaluate segmentation performance when multiple acceptable annotations are available
- A more robust evaluation metric
- Improve the model accuracy both quantitatively and qualitatively.