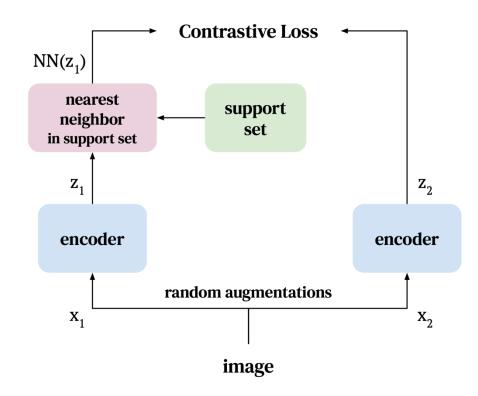
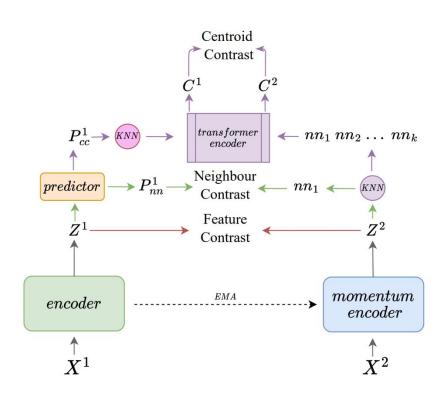


Contrastive Learning with Synthetic Positive

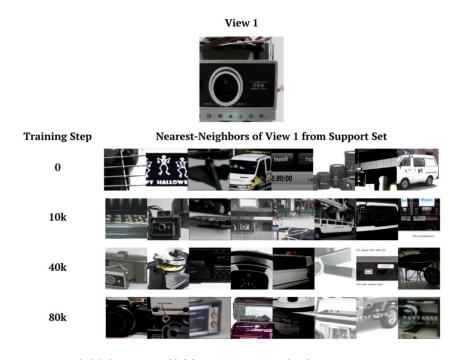
Dewen Zeng¹, Xinrong Hu¹, Yawen Wu¹, Xiaowei Xu² and Yiyu Shi¹


¹ University of Notre Dame

² Guangdong Provincial People's Hospital

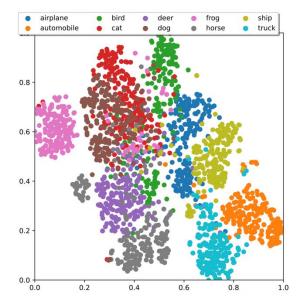


NNCLR (ICCV'21), using the nearest neighbor as positive

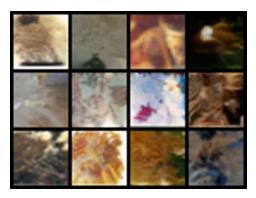


All4One (ICCV'23), using centroid of multiple nearest neighbors

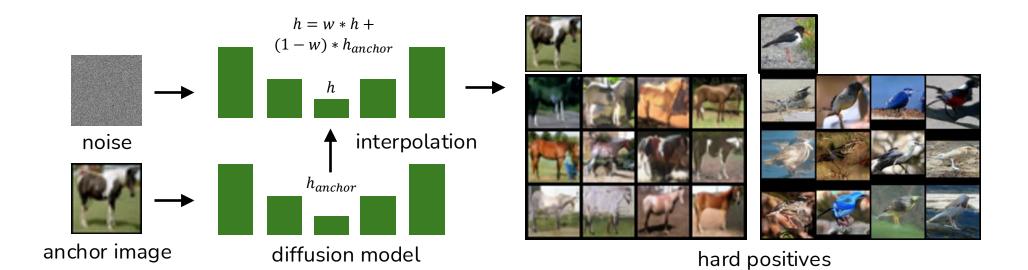
- False positives in the early training stage
- "Easy" positives because the model can already generate close embeddings for these examples



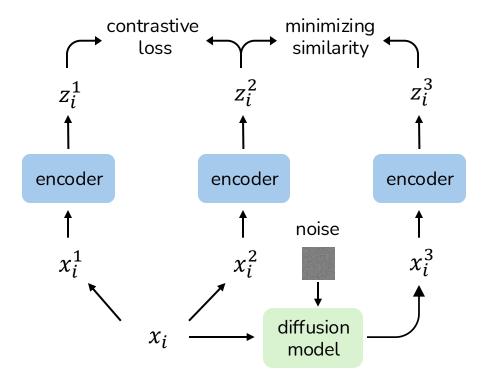
NNs at different training stages


Motivation

- Unconditional diffusion model already learns good semantic embedding
- Semantic and background features are decoupled in different layers
- Control the semantics of the generated images by modifying the latent embedding in random sampling


t-SNE plot from latent features of diffusion model trained on Cifar 10

Setting latent features to 0 during random sampling (Semantic is missing)



$$h = w * h + (1 - w) * h_{anchor}$$

$$\mathcal{L}_{clsp} = \mathcal{L}_{simclr} + \lambda \sum_{i \in [1,N]} ||z_i^2 - z_i^3||_2^2$$

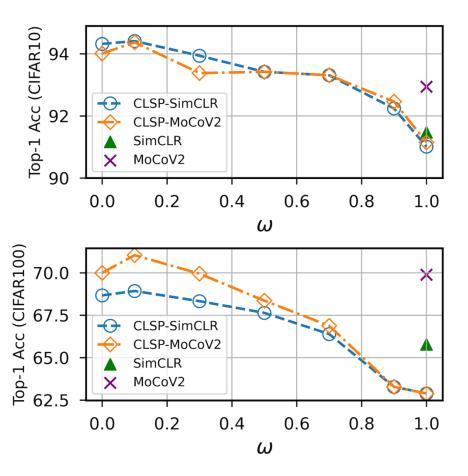
Linear Evaluation Results

		CIFAR10		CIFA	R100
	Epoch	Linear	kNN	Linear	kNN
Barlow Twins	1000	92.10	90.60	70.90	66.40
BYOL	1000	92.58	90.78	70.46	67.22
DINO	1000	89.52	88.40	66.76	62.07
MoCoV2	1000	92.94	91.45	69.89	66.91
MoCoV3	1000	93.10	91.00	68.83	65.07
NNCLR	1000	91.88	90.61	69.62	65.98
$\operatorname{Sim}\operatorname{CLR}$	1000	91.47	88.57	65.78	62.69
SupCon	1000	93.82	92.60	70.38	69.28
SwAV	1000	89.17	87.42	64.88	60.65
VIbCReg	1000	91.18	89.25	67.37	63.16
VICReg	1000	92.07	89.97	68.54	65.09
All4One	1000	93.24	91.38	72.17	67.83
DCL [53]	200	85.90	84.40	58.90	54.30
CL-GAN [48]	300	92.94	-	67.41	-
SimCLR-FT [58]	1000	91.77	91.45	66.43	65.07
MoCoV2-FT [58]	1000	92.58	92.60	69.40	68.79
CLSP-noaug	1000	92.86	92.46	54.46	53.53
SimCLR-aug	1000	91.96	91.44	68.30	66.75
MoCoV2-aug	1000	93.04	92.82	69.13	68.21
CLSP-SimCLR	300	93.10	92.44	67.94	66.04
CLSP-SimCLR	1000	94.37	93.59	72.01	70.19
CLSP-MoCoV2	1000	94.41	93.90	71.76	69.75

Pre-trained on Cifar10, Cifar100, and STL10

Source	CIFAR10	CIFAR100	STL10					
Target	CIFAR100	CIFAR10	CIFAR10	CIFAR100	Pets	Flowers	DTD	Caltech101
SimCLR	47.97	73.81	81.58	52.79	53.97	53.23	45.74	73.42
MoCoV2	54.90	78.57	83.39	55.41	56.37	54.32	46.23	76.13
BYOL	53.62	78.69	82.88	55.34	55.93	57.81	45.59	78.57
NNCLR	53.27	78.79	81.60	53.94	56.31	61.93	43.51	78.24
All4One	56.17	79.38	83.33	55.49	56.65	57.52	46.13	76.62
SimCLR-FT	55.36	80.89	81.62	53.89	54.70	51.75	42.71	73.58
SimCLR-aug	54.42	79.78	81.83	54.57	56.66	56.14	45.37	75.16
CLSP-SimCLR	61.64	83.14	84.98	56.83	56.75	57.52	46.76	80.01
CLSP-MoCoV2	61.19	83.13	86.58	57.97	55.82	50.20	44.68	79.42

Pre-trained on ImageNet100


	CIFAR10	CIFAR100	Pets	Flowers	DTD	Caltech101	Food101	Cars
All4One	86.58	65.42	71.25	72.21	59.04	84.93	63.30	33.14
CLSP-SimCLR	87.36	$\boldsymbol{66.50}$	73.97	72.65	59.95	$\bf 85.24$	59.87	32.81

- $h = w * h + (1 w) * h_{anchor}$
- ω controls the degree of randomness in the semantic during sampling

Accuracy changes with different candidate set size

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1	2	4	8	16	32
CIFAR10	92.24	93.29	93.95	94.37	94.38	94.33
CIFAR100	65.84	68.33	70.65	72.01	71.92	72.04

$$\mathcal{L}_{clsp} = \mathcal{L}_{simclr} + \lambda \sum_{i \in [1,N]} \left\| z_i^2 - z_i^3 \right\|_2^2$$

Accuracy changes with different λ

λ	0.01	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
CIFAR10	91.80	91.97	93.16	93.84	94.23	94.37	94.27	94.21	94.59
CIFAR100	65.19	68.08	70.68	71.36	71.81	72.01	70.44	70.00	69.07

Thank you!

Code: https://github.com/dewenzeng/clsp