

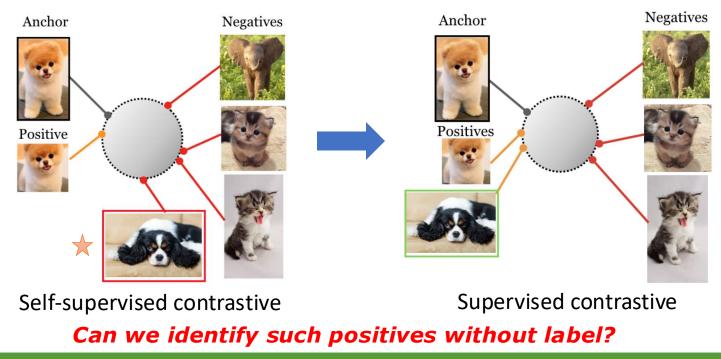
Additional Positive Enables Better Representation Learning for Medical Images

Dewen Zeng¹, Yawen Wu², Xinrong Hu¹, Xiaowei Xu³, Jingtong Hu², Yiyu Shi¹

¹ University of Notre Dame

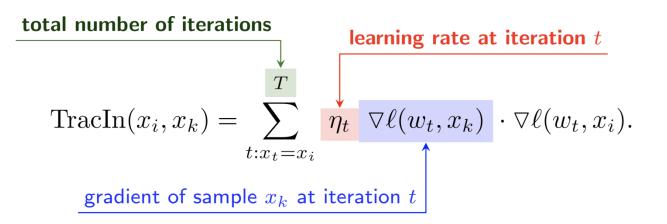
² University of Pittsburgh

³ Guangdong Provincial People's Hospital



Limitations in SOTA self-supervised learning framework

- Positive pairs are generated using data augmentations
- □ Instance with the same label from other images are not utilized



Influence Function: TracIn

- □ Measure how the loss of a test sample changes with the training process of a training sample
- A <u>positive</u> TracIn value means <u>helpful</u> example that reduces loss, a <u>negative</u> TracIn value means <u>harmful</u> example that increases loss

Model interpretation

Test images

microphone

Helpful images

church

microphone microphone microphone

Harmful images

oboe

acousticguitar

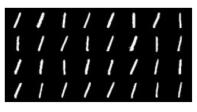
stage

church

castle

castle

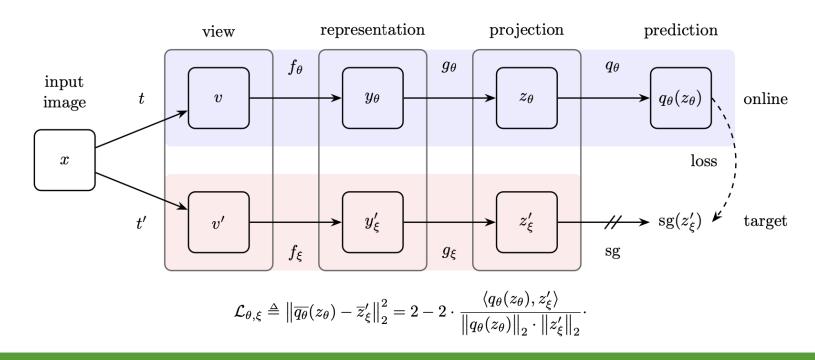
castle


Mislabel identification (self influence)

Highest TracIn MNIST

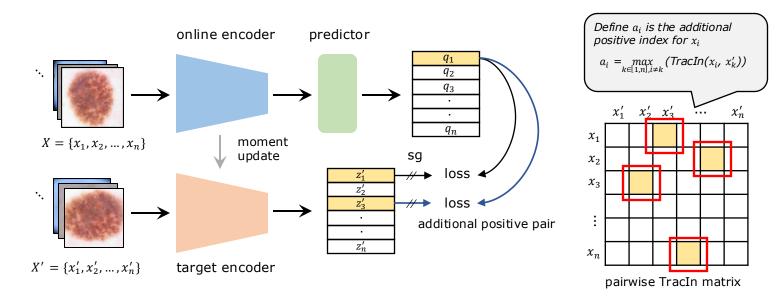
Lowest TracIn

MNIST



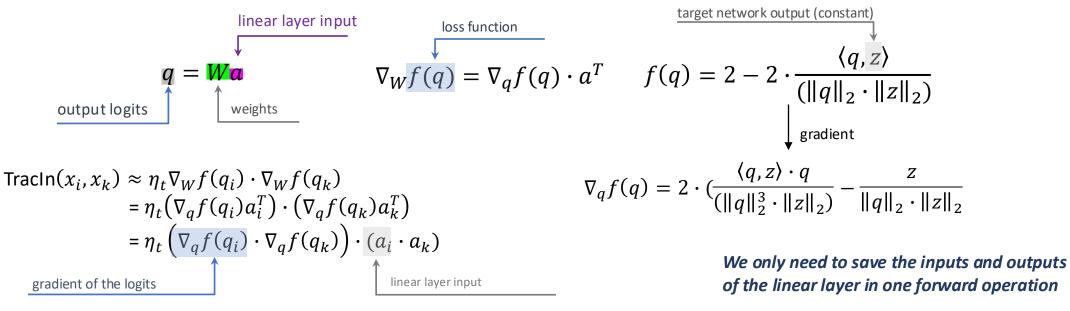
BYOL: Bootstrap your own latent

- □ Only positive pair is required (no negatives)
- **G** Easy to compute per-sample gradient



BYOL-TracIn

- □ Use BYOL loss function without label
- □ Selecting another sample with the largest TracIn value
- □ Use the gradient of the last linear layer to estimate (save resources)



Efficient per-sample gradient

- □ TracIn requires the gradient of each sample.
- □ PyTorch or Tensorflow do not support batch-wise per-sample gradient
 - For linear layer:

Semi-supervised results

- Dataset: ISIC 2019 (25,331 images), ChestX-ray (108,948 images)
- □ Our method: BYOL-TracIn, upper bound: BYOL-Sup
- □ BYOL-TracIn-pretrained: using a pretrained model for computing TracIn

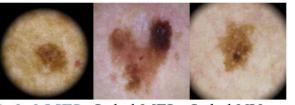
		ISIC 2019			ChestX-ray		
baselines	Method	10%	50%	100%	10%	50% [°]	100%
			BMA \uparrow			AUC \uparrow	
	- Random	0.327(.004)	0.558(.005)	0.650(.004)	0.694(.005)	0.736(.001)	0.749(.001)
	BYOL [12]	0.399(.001)	0.580(.006)	0.692(.005)	0.699(.004)	0.738(.003)	0.750(.001)
	FNC [17]	0.401(.004)	0.584(.004)	0.694(.005)	0.706(.001)	0.739(.001)	0.752(.002)
	FT [30]	0.405(.005)	0.588(.008)	0.695(.005)	0.708(.001)	0.743(.001)	0.751(.002)
	\mathbf{FS}	0.403(.006)	0.591(.003)	0.694(.004)	0.705(.003)	0.738(.001)	0.752(.002)
	FS-pretrained	0.406(.002)	0.596(.004)	0.697(.005)	0.709(.001)	0.744(.002)	0.752(.002)
	BYOL-TracIn	0.403(.003)	0.594(.004)	0.694(.004)	0.705(.001)	0.742(.003)	0.753(.002)
	BYOL-TracIn	0 408(007)	0 609(009)	0.700(.006)	0.719(001)	0.746(0.00)	0.754(000)
v	-pretrained	0.408(.007)	0.002(.003)	0.700(.008)	0.712(.001)	0.740(.002)	0.754(.002)
	BYOL-Sup	0.438(.006)	0.608(.007)	0.705(.005)	0.714(.001)	0.748(.001)	0.756(.003)

Transfer learning results

- Dataset: ISIC 2016 (900 images), Shenzhen (662 images)
- **G** FS: Feature Similarity

Method	ISIC 2016	Shenzhen
	Precision \uparrow	$AUC\uparrow$
Random	0.400(.005)	0.835(.010)
BYOL [12]	0.541(.008)	0.858(.003)
FNC [17]	0.542(.007)	0.862(.006)
FT [30]	0.559(.011)	0.876(.005)
FS	0.551(.003)	0.877(.004)
FS-pretrained	0.556(.004)	0.877(.006)
BYOL-TracIn	0.555(.012)	0.880(.007)
BYOL-TracIn	O F G F (010)	0.000(001)
-pretrained	0.565(.010)	0.883(.001)
BYOL-Sup	0.592(.008)	0.893(.006)

Anchor image Top-3 most similar images in a mini-batch



Label:NV Label:NV

TracIn:0.023 TracIn:0.018 TracIn:0.016

Label:MEL	Label:MEL	Label:NV
FS:0.907	FS:0.894	FS:0.892

Conclusions

- 1. BYOL-TracIn provides a way to select additional positive pair for self-supervised pre-training, which could increase the diversity of features in positive pairs.
- 2. BYOL-TracIn shows significant improvements in both semi-supervised and transfer learning settings